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Testing the Markov condition in ion channel recordings

J. Timmer* and S. Klein
Freiburger Zentrum fu¨r Datenanalyse und Modellbildung, Albertstrasse 26-28, D-79104 Freiburg, Germany

~Received 25 July 1996; revised manuscript received 2 December 1996!

A statistical test is presented to decide whether data are adequately described by probabilistic functions of
finite state Markov chains~‘‘hidden Markov models’’! as applied in the analysis of ion channel data. Particu-
larly, the test can be used to decide whether a system obeys the Markov condition. Simulation studies are
performed in order to investigate the sensitivity of the proposed test against violations of the model assump-
tions. The test can be applied analogously to Markov models.@S1063-651X~97!15003-6#

PACS number~s!: 87.10.1e, 02.50.Ga
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I. INTRODUCTION

Ion channels are large proteins located in the membra
of cells. They serve for signal transmission and regulate
concentration of ions in the cell. The channels open a
close in a stochastic manner dependent on external co
tions such as trans-membrane voltage difference, conce
tion of ligands, or mechanical stress. In general the chan
have several states in which they are closed and open
spectively. They might even possess open states with di
ent conductivity. The noisy current in the range ofpA
through single channels can be measured by the patch c
technique@1#.

Analyzing data from ion channels generally relies on
assumption of a Markovian dynamics. This holds for infe
ring the number of channel states and mean dwell times
fitting exponentials to dwell time histograms@2,3#, for ex-
plicit modeling of low-pass filtered records by Markov mo
els @4,5#, and also for analyzing unfiltered records by hidd
Markov models@6–11#.

In many cases, however, it is not evident from empiri
data whether the system actually obeys the Markov co
tion. For two reasons, this assumption has given rise t
lively discussion@12–14#. On the one hand, the informatio
about the validity of this condition can provide valuable i
sight into the system under investigation@15,16#. On the
other hand, conclusions drawn from a model that does no
the process that has produced the data are very likely to
to erroneous results. Thus, it is desirable to test whether
process is adequately described by the selected~hidden!
Markov model.

We propose a test to perform this task. It is based on
asymptotic distributions of the log-likelihood that holds
the model is valid. A deviation from the expected distrib
tion provides a test for the model. In order to evaluate
sensitivity of the proposed test against a violation of the n
hypothesis four simulation studies were performed where
assumption of an underlying hidden Markov model is v
lated in various manners. A fifth simulation study shows t
the test is also useful to estimate the minimum number
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states in a Markov model needed to be compatible with
data.

The paper is organized as follows: In the next section,
briefly review the hidden Markov model. In Sec. III the te
statistic is introduced. The power of test is evaluated
simulation studies in Sec. IV. As presented, the test app
to hidden Markov models, however, it can be applied ana
gously to Markov models.

II. HIDDEN MARKOV MODELS

Hidden Markov models~HMM !, introduced in@17# and
used in diverse fields such as speech recognition@18# and ion
channel analysis, are generalizations of Markov models
allow one to include observational noise. HMMs can be f
mulated in continuous-time and discrete-time versions. F
lowing @7# we chose the latter. The results also hold f
continuous-time models.

A stationary hidden Markov model is given by an uno
servable processXt, which can take one of thes states for
every pointt in time. The probabilities for a change from
statei to a statej are described by a time-independent tra
sition matrix ~ai j ! ( i , j51, . . . ,s). Since each row of the
matrix is normalized to unity, thes3s matrix ~ai j ! hass(s
21) free parameters. The observationsYt are determined
by the output probability densities of each of thes states.
These densities are described by parameter vectorsfi
~i51, . . . ,s!. For example, the density functionsf (y,fi!
can be given by Gaussian distributions with different mea
and variances.

For ease of notation, the parameters of the hidden Mar
model are arranged in a single parameter vectoru. Its dimen-
sion is denoted byr . For example, in the case ofs states with
Gaussian output probabilities the model hasr5s(s21)
12s5s21s parameters.

Given an observed time seriesY1•••N5Y1 , . . . ,YN
of lengthN, the parameter vectoru can be estimated by a
maximum likelihood procedure@19–21#. For the calculation
of the log-likelihood function

LN~Y1•••N ,u!5 lnP@Y1•••Nuu# ~1!

the so-called forward probabilities to find the system in st
i at time t given the data up to timet are defined by
:
e
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55 3307TESTING THE MARKOV CONDITION IN ION CHANNEL . . .
a i~ t,Y1•••t ,u!5P@Xt5 i ,Y1•••tuu#. ~2!

They can be calculated using the recursion

a i~ t,Y1•••t ,u!5(
j51

s

a j~ t21,Y1•••t21 ,u!ai j ~u! f ~Yt ,f j !

~3!

and lead to the log-likelihood function by

LN~Y1•••Nuu!5 ln(
i51

s

a i~N,Y1•••N ,u!. ~4!

An estimate uN can be obtained by maximizin
LN(Y1•••Nuu) with respect tou either by nonlinear optimiza
tion or by the expection-maximization algorithm, i.e., t
Baum-Welsh reestimation formulas@19,22#. Here, all nu-
merical calculations have been performed by the la
method as described in@20# since it behaves numericall
more stably than nonlinear optimization. For ease of nota
we suppress the dependence ofLN(Y1•••Nuu) on Y1•••N in the
following.

III. THE TEST STATISTIC

In this section we introduce the statistics to test the
equacy of a given hidden Markov model to describe an
served time series.

Under mild regularity conditions, the difference betwe
the maximum likelihood estimatorsûN and the true param
etersu0 are generally believed due to central limit theore
to converge to a normal distribution

AN~u02ûN!;N~0,S!, ~5!

with, asymptotically,

]2

]u i]u j
LN~ ûN!→2

1

N
S i j

21. ~6!

This has been proven for independent random varia
~see, e.g.,@23#!, Markov models@24#, and hidden Markov
models with discrete output probabilities@17#. For hidden
Markov models with continuous output probabilities, up
now, the consistency of the maximum likelihood estimat
@25#, the local asymptotic normality in the sense of Le Ca
@26,27#, and the asymptotic normality of maximum split da
likelihood estimators has been shown@28#. The proof of
asymptotic normality of the maximum likelihood estimato
in hidden Markov models is announced@29#.

Given the asymptotic normality of the estimators of Eq
~5!, the distribution of the maximum log-likelihood
LN(ûN), which is itself a random variable, can be derived
a Taylor expansion~see@23# for a detailed discussion!:

LN~u0!5LN~ ûN!1
]

]u i
LN~ ûN!~u02ûN!

1
1

2
~u02ûN!

]2

]u i]u j
LN~ ûN!~u02ûN!

1O~ uu02ûNu3!. ~7!
r

n

-
-

s

s

s

.

The second term on the right-hand side vanishes due to
estimation procedure. Neglecting higher order terms, solv
for 2@L(ûN)2L(u0)# and using Eqs.~5! and ~6! yields

2@LN~ ûN!2LN~u0!#;x r
2. ~8!

This relation holds asymptotically if the model is specifi
correctly. The numberN of data needed to reach the asym
totic regime depends on the process. Simulation studies
presented here show that Eq.~8! holds if each transition be
tween the states has occurred at least 10 times.

For the test we estimateu0 based on the whole time serie
of lengthN and denote this estimate byûN . Then, the time
series is divided inK parts of lengthM5N/K. For each
these parts we estimate the parametersûM and evaluate the
log-likelihoods LM(ûM) and LM(ûN). Asymptotically, i.e.,
for N→`, M→`, but M/N→0, the distribution of

2@LM(ûM)2LM(ûN)# is given by

2@LM~ ûM !2LM~ ûN!#;x r
2. ~9!

By the proposed procedure we obtainK samples of thex r
2

distribution if the model is valid. In order to judge wheth
Eq. ~9! holds, we apply the Kolmogorov-Smirnov test for th
consistency of an empirical distribution with a propos
theoretical distribution@30#. The Kolmogorov-Smirnov-tes
statistic is denoted byZ in the following.

IV. EVALUATION OF THE POWER OF THE TEST

In this section, we evaluate the power of the above p
posed test; i.e., we investigate the sensitivity of the t
against a violation of the null hypothesis that the data w
produced by a hidden Markov model. Of course, it is n
possible to consider all imaginable alternative hypothes
One has to restrict oneself to a reasonable class of altern
hypotheses. We choose four alternative hypotheses that
late the model assumptions:~1! Nonstationary transition
probabilities;~2! dwell time dependent transition probabil
ties;~3! a fractal model;~4! refractory time. Finally, we show
that the proposed test enables one to estimate the sma
number of states of the Markov process compatible with
data.

A. Model definition

In order to evaluate the power of the test numerically
chose a hidden Markov model with three states and Gaus
output probability functions representing, e.g., one ion ch
nel with two different conductance levels. The transition m
trix A is given by

A5S 0.90 0.05 0.05

0.06 0.92 0.02

0.03 0.02 0.95
D . ~10!

The means and the variances of the Gaussian output p
ability functions were chosen to be
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3308 55J. TIMMER AND S. KLEIN
m150.0, s1
250.1,

m251.0, s2
250.1, ~11!

m352.0, s3
250.1.

The dimensionr of the parameter vectoru is 12. We simu-
lated time series of lengthN5150.000 and divided it into
K5150 time series of lengthM51000 to perform the test.
To apply the test the resulting time series must be lon
enough for the asymptotic results to be valid. If the off
diagonal elements of the transition matrix are of similar mag
nitude, as a rule of thumb, this condition is met, if the time
series have a length of at least

M510stmax, ~12!

with s the number of states andtmax the largest dwell time.
For the chosen model, the dwell times are 10 and 12.5, r
spectively, 20 units of time.

Figure 1 shows the expected cumulativex12
2 distribution

according to Eq.~9! and the empirical cumulative distribu-
tion for the chosen process. It indicates a good qualitativ
agreement of the two distributions. In order to quantify this
we counted for 200 realizations of the process the number
cases where the hypothesis of consistency of the two dist
butions was rejected by the Kolmogorov-Smirnov test at
significance level of 5%. This results in an actual rejectio
rate of 4.5%, indicating that the asymptotic regime is reache
for the chosen situation.

B. Power of the test

To investigate the power of a test, usually, for differen
degrees of violation of the null hypothesis on the order o
1000 times series are realized, the test is performed, and
fraction of rejected null hypothesis given a certain signifi
cance levela is calculated in dependence of the degree o
violation. However, this procedure to evaluate the power re
quires an enormous computational effort to obtain a goo
approximation of the underlying smooth behavior since fo
the chosen model and number of data the maximization
the log-likelihood for a single time series requires ca. 45 mi

FIG. 1. The empirical cumulative distribution of 2@LM(ûM)
2LM( ûN)# ~solid line! and the expected cumulativex12

2 distribution
~dotted line! for the process defined by Eqs.~10! and ~11!.
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on an IBM 6000 RISC workstation. Therefore, we chose
another way to display the power of the test. Instead o
counting the simulation runs with rejected null hypothesis
we average the test statistic of 10 realizations for each degr
of violation of the null hypothesis to approximate the smooth
curve. This procedure estimates the mean of the distributio
of the test statistic for the alternative hypotheses. Simulatio
studies show that these distributions of the test statistic a
symmetric and that their variance is rather constant. There
fore, the mean calculated here corresponds to the median
the distributions and is related monotonically to the fraction
calculated usually. Thus, this procedure yields essentially th
same information as the canonical method that requires on
1% of the computational effort.

We now discuss the different simulation studies to evalu
ate the power of the proposed test.

1. Nonstationary transition probabilities

In order to investigate the sensitivity against violations o
the stationarity assumption, nonstationarity of the transitio
probability of the first state is introduced by

ã11~ t !5a112
~s21!nt

N
, ~13!

ã1 j~ t !5a1 j1
nt

N
~ j52, . . . ,s!, ~14!

wheres again denotes the number of states. This time de
pendency of the transition probabilities causes a decreasi
dwell time of the first state. The drift raten serves as the
parameter for the null hypothesis violation. As outlined
above, we judge the performance of the test by averaging th
test statistic of ten simulations for every degree of the nu
hypothesis violation. Figure 2 shows the averaged test stati
tic Z of the Kolmogorov-Smirnov test with increasing viola-
tion of the null hypothesis and the 1% and 0.1% levels o
significance, respectively. A change of 10% over the whol
observation time in the dwell probability of one of three
states is detectable by the proposed test.

FIG. 2. The effect of drifting transition probabilities. Shown is
the averaged test statisticZ of the Kolmogorov-Smirnov test for
increasing drift ratesn. The 1% and the 0.1% significance levels are
marked.
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55 3309TESTING THE MARKOV CONDITION IN ION CHANNEL . . .
2. Dwell-time-dependent transition probabilities

The Markov condition, stating that the transition prob
abilities between the states do not depend on the time alrea
spent in the states, is violated by increasing the probability
leave any state proportional to the timet in already spent in
the state. The proportionality constantg parametrizes the
violation of the null hypothesis.

ãi i ~ t in!5aii2~s21!gt in , ~15!

ãi j ~ t in!5ai j1gt in ~ iÞ j !. ~16!

Figure 3 shows the result of the simulation. A change o
more than 1% per time step for the dwell probabilities lead
to the rejection of the hypothesis that the time series wa
generated by a Markov process. During the simulation,
was controlled that the condition 0,ãi j (t in),1 was not vio-
lated.

3. A fractal model

Another possibility to violate the Markov condition is
given by the fractal models@15#. For these models, the dwell
probability increases with the timet in already spent in the
state. The transition probabilities of a fractal model are give
by

ãi i ~ t in!512~12aii !t in
12D , ~17!

ãi j ~ t in!5ai j t in
12D , iÞ j , ~18!

whereD is the fractal dimension that parametrizes the vio
lation of the Markov condition. ForD51 the Markov model
results. The result of the simulation in Fig. 4 reveals that fo
the given model a fractal dimension of e.g., 1.1 will lead to
rejection of a Markovian process. On the other hand, a d
mension larger than 1.1 can be excluded if the test does n
reject the model.

4. Refractory time

Finally, the Markov condition is violated by introducing a
refractory time, i.e., a minimal time that the process has
spend in a state. To simulate such processes we used

FIG. 3. The effect of dwell-time-dependent transition probabili
ties. Shown is the averaged test statisticZ for increasing degreesg
of the null hypothesis violation. The 1% and the 0.1% significanc
levels are marked.
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model according to Eq.~10! but forced the state to stay for
the time t ref before the dynamics were applied. Figure 5
displays the results. Note that the dwell times of the chos
model were 10 and 12.5, respectively 20 units of time, s
that the considered type of violation is only detectable if
amounts to 50% of the shortest dwell time. In summary, th
test enables a detection of different types of violations of th
Markov conditions.

C. Estimating the minimum number of states

So far, the number of statess of the Markov process was
assumed to be known. Since the number of assumed sta
ŝ determines the degrees of freedomr of the model, the
proposed test can be applied to infer the number of states
the process under investigation. This is done by compari
the left-hand side of Eq.~9! with the x r̂

2 distribution with
degrees of freedomr̂ corresponding to the assumed mode
e.g., in the case of a Gaussian model:r̂5 ŝ21 ŝ. Figure 6
displays the results. Hidden Markov models with an increa
ing number of states are fitted to data from the model E
~10! with three states. The test enables a determination of t
~correct! smallest number of states that can describe the pr
cess. Note that models with more than three states are a
detected as being consistent with the data.

e

FIG. 4. Violation of the Markov condition by a fractal model.
Shown is the averaged test statisticZ for increasing fractal dimen-
sionD.

FIG. 5. The effect of refractory time. Shown is the averaged te
statisticZ for increasing refractory timest ref .
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3310 55J. TIMMER AND S. KLEIN
V. DISCUSSION

Markov and hidden Markov models are increasingly us
in the analysis of patch clamp ion channel data. In ma
cases their adequacy for a given system has been assu
but not tested using empirical data. If a record is a realizat
of a hidden Markov process, the asymptotic distribution
the log-likelihood is ax r

2 distribution, its number of degree
of freedomr being given by the number of model param
eters. Thus, a test for the consistency of the empirical dis
bution of a fitted model with the theoretical distribution pro
vides a test whether the time series may be considered
realization of a hidden Markov process.

Based on the asymptotic distribution of the log-likelihoo
we have introduced such a test. The test is analogously
plicable to test Markov models. In order to investigate ho

FIG. 6. Determining the number of states. Shown is averag
test statisticZ for hidden Markov models with different number o
statesŝ applied to time series that were generated by a hidd
Markov model with three states. The 1% and the 0.1% significa
levels are marked.
-
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sensitive the test is to detect a violation of the assum
model, we performed four simulation studies where
modified a hidden Markov process continuously in differe
ways to become non-Markovian. The sensitivity of the p
posed test depends on how the model assumption of a
tionary Markov process is violated: The test has shown to
very sensitive if the violation results from drifting transitio
probabilities, from dwell-time-dependent transition pro
abilities, or a fractal model. For example, a fractal dimens
of 1.7 as reported in@15# would lead to a highly significan
rejection of the Markov model used in the simulation stud
The test is less sensitive to detect refractory times in
system that retard the beginning of the Markovian dynam

Furthermore, the proposed test can be used to estimat
minimum number of states in the Markov process necess
to describe the data.

In applications, performing simulation studies as p
sented will reveal which degree of violation of the mod
assumptions is consistent with the fitted model and wh
degrees of violation can be excluded if the model cannot
rejected.

The test is suited for analyzing data recorded under ste
state conditions as in the case of ligand-dependent ion c
nels. For voltage-dependent channels where numerous t
for a certain pulse protocol are recorded these single tr
determine the lengthM in the protested test. Further, it ca
help to decide whether observed changes in inactivation
namics@31# are consistent with statistical fluctuations in
fitted model or have to be treated explicitly as modal gat
between two different dynamics.
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